Test 1 - Math Thought Dr. Graham-Squire, Spring 2016

Name: _____

I pledge that I have neither given nor received any unauthorized assistance on this exam.

(signature)

DIRECTIONS

- (1) Don't panic.
- (2) <u>Show all of your work</u> and <u>use correct notation</u>. A correct answer with insufficient work or incorrect notation will lose points.
- (3) You are required to do the first 5 questions on the test. For questions 6 through 10, you only need to do <u>three</u> of the questions. It is fine if you do all five of the questions 6-10, though–I will grade them all and just give you the points for the top 3 scores.
- (4) Cell phones and computers are <u>not</u> allowed on this test. Calculators <u>are</u> allowed, though it is unlikely that they will be helfpul.
- (5) Make sure you sign the pledge above.
- (6) Number of questions = 8 to 10. Total Points = 40.

(1) (4 points) Find truth values for P, Q, R and S to show that $[(P \to Q) \to R] \to S$ and $P \to [Q \to (R \to S)]$ are not logically equivalent.

- (2) (4 points) A sequence of real number $\{x_1, x_2, x_3, ...\}$ is called a BooYaa sequence provided that for each positive real number a, there exists a positive integer N such that for all $z \in \mathbb{Z}^+$, if z > N, then $|x_z| < a$.
 - (a) Use mathematical notation to express what it means to be a BooYaa sequence.

(b) Use words to carefully explain what it means for a sequence to NOT be a BooYaa sequence.

(3) (4 points) Let the domain be ℝ =real numbers. Are the following statements true or false? Are they logically equivalent? Explain why or why not.

(i)
$$(\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) (\forall z \in \mathbb{R}) (x + y - z = 0)$$

(ii)
$$(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})(\exists z \in \mathbb{R})(x + y - z = 0)$$

(4) (8 points) Let n be an integer. Use the *definition* of even and/or odd to prove the following:

n+3 is even $\leftrightarrow n^2+3$ is even.

(5) (5 points) For the following statement/proof, you must choose one of two options:

(a) The statement is false, and thus the proof is false. In this case, you must say $\frac{\text{how}/\text{where the proof is false}}{\text{how the statement is false.}}$

(b) The statement is true, but the proof is false and/or poorly written. In this case, you must say <u>how/where the proof is false</u> or <u>what about it is poorly written</u>, and then write a correct proof.

The statement: "If $n \not\equiv 2 \pmod{10}$, then $n^2 \not\equiv 4 \pmod{10}$."

Proof. Proof by contrapositive. Suppose that $n \equiv 2 \pmod{10}$. Then by the definition and properties of equivalence modulo 10, we have

	n	=	2 + 10k	for some $k \in \mathbb{Z}$
\rightarrow	n^2	=	$(2+10k)^2$	(squaring both sides)
\rightarrow	n^2	=	$4 + 40k + 100k^2$	(math)
\rightarrow	n^2	=	$4 + 10(4k + 10k^2)$	(factoring)
\rightarrow	n^2	\equiv	$4 \pmod{10}$	(definition of congruence mod 10)

Thus we have shown that if $n \equiv 2 \pmod{10}$, then $n^2 \equiv 4 \pmod{10}$, so by the contrapositive we have "If $n \not\equiv 2 \pmod{10}$, then $n^2 \not\equiv 4 \pmod{10}$," as desired. \Box

For questions 6 to 10, you only need to answer 3 out of the five questions. If you answer all of them, that is fine–I will grade all of them and give you the highest 3 scores from the 5 questions.

(6) (5 points) Is the following statement true or false? If true, prove it. If false, find a counterexample.

For all integers x and y, $(x + y)^2 \equiv (x^2 + y^2) \pmod{2}$.

(7) (5 points) Suppose that $a, b, c \in \mathbb{Z}$ and $c \neq 0$. Use the definition of "divides" to prove that if ac divides bc, then a divides b.

(8) (5 points) Prove that if m is an integer, then 3 divides $m^2 - m$ or 3 divides $m^2 - m - 2$.

(9) (5 points) Use the *definitions* of rational and/or irrational to prove the following: For all nonzero real numbers x and y, if x is rational and y is irrational, then $\frac{x}{y}$ is irrational. (10) (5 points) Prove the following statement. You will need to use the Pythagorean theorem for right triangles.

Suppose that j and m are positive integers, j and m are the lengths of the legs of a right triangle, and m+1 is the length of the hypotenuse of the triangle. Prove that j must be an odd integer.

Extra Credit(2 points) Suppose P(x) and Q(x) are open sentences. Is $\left((\exists x \in \mathbb{R})(P(x) \leftrightarrow Q(x))\right) \equiv \left((\exists x \in \mathbb{R})(P(x)) \leftrightarrow (\exists x \in \mathbb{R})(Q(x))\right)$? Explain your answer.